Title of Dissertation : ALGORITHMS FOR GENERATING MULTI - STAGE MOLDING PLANS FOR ARTICULATED ASSEM - BLIES Alok
نویسندگان
چکیده
Title of Dissertation: ALGORITHMS FOR GENERATING MULTI-STAGE MOLDING PLANS FOR ARTICULATED ASSEMBLIES Alok K. Priyadarshi, Doctor of Philosophy, 2006 Dissertation directed by: Associate Professor Satyandra K. Gupta Department of Mechanical Engineering Plastic products such as toys with articulated arms, legs, and heads are traditionally produced by first molding individual components separately, and then assembling them together. A recent alternative, referred to as in-mold assembly process, performs molding and assembly steps concurrently inside the mold itself. The most common technique of performing in-mold assembly is through multistage molding, in which the various components of an assembly are injected in a sequence of molding stages to produce the final assembly. Multi-stage molding produces better-quality articulated products at a lower cost. It however, gives rise to new mold design challenges that are absent from traditional molding. We need to develop a molding plan that determines the mold design parameters and sequence of molding stages. There are currently no software tools available to generate molding plans. It is difficult to perform the planning manually because it involves evaluating large number of combinations and solving complex geometric reasoning problems. This dissertation investigates the problem of generating multi-stage molding plans for articulated assemblies. The multi-stage molding process is studied and the underlying governing principles and constraints are identified. A hybrid planning framework that combines elements from generative and variant techniques is developed. A molding plan representation is developed to build a library of feasible molding plans for basic joints. These molding plans for individual joints are reused to generate plans for new assemblies. As part of this overall planning framework, we need to solve the following geometric subproblems – finding assembly configuration that is both feasible and optimal, finding mold-piece regions, and constructing an optimal shutoff surface. Algorithms to solve these subproblems are developed and characterized. This dissertation makes the following contributions. The representation for molding plans provides a common platform for sharing feasible and efficient molding plans for joints. It investigates the multi-stage mold design problem from the planning perspective. The new hybrid planning framework and geometric reasoning algorithms will increase the level of automation and reduce chances of design mistakes. This will in turn reduce the cost and lead-time associated with the deployment of multi-stage molding process. ALGORITHMS FOR GENERATING MULTI-STAGE MOLDING PLANS FOR ARTICULATED ASSEMBLIES by Alok K. Priyadarshi Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2006 Advisory Committee: Associate Professor Satyandra K. Gupta, Chairman/Advisor Professor Davinder K. Anand Associate Professor Hugh Bruck Associate Professor Jeffrey W. Herrmann Professor Amitabh Varshney c © Copyright by Alok K. Priyadarshi 2006
منابع مشابه
Development of Multi-Stage Molding Methods for Manufacturing of Mesoscopic 3D Articulated Devices
3D articulated devices involve moving parts with significant out-of-plane motion. While manufacturing technologies exist for scaling down 2D articulated devices, a scalable and cost effective manufacturing method does not currently exist for making mesoscopic 3D articulated devices. Even though individual mesoscopic parts can be easily fabricated, assembling them into devices remains a major ch...
متن کاملIncorporating Manufacturability Considerations during Design of Injection Molded Multi-Material Objects
The presence of an already molded component during the second and subsequent molding stages makes multi-material injection molding different from traditional injection molding process. Therefore, designing multi-material molded objects requires addressing many additional manufacturability considerations. In this paper, we first present an approach to systematically identifying potential manufac...
متن کاملA heuristic approach for multi-stage sequence-dependent group scheduling problems
We present several heuristic algorithms based on tabu search for solving the multi-stage sequence-dependent group scheduling (SDGS) problem by considering minimization of makespan as the criterion. As the problem is recognized to be strongly NP-hard, several meta (tabu) search-based solution algorithms are developed to efficiently solve industry-size problem instances. Also, two different initi...
متن کاملMeta-heuristic Algorithms for an Integrated Production-Distribution Planning Problem in a Multi-Objective Supply Chain
In today's globalization, an effective integration of production and distribution plans into a unified framework is crucial for attaining competitive advantage. This paper addresses an integrated multi-product and multi-time period production/distribution planning problem for a two-echelon supply chain subject to the real-world variables and constraints. It is assumed that all transportations a...
متن کاملDesign of Revolute Joints for In-Mold Assembly Using Insert Molding.
Creating highly articulated miniature structures requires assembling a large number of small parts. This is a very challenging task and increases cost of mechanical assemblies. Insert molding presents the possibility of creating a highly articulated structure in a single molding step. This can be accomplished by placing multiple metallic bearings in the mold and injecting plastic on top of them...
متن کامل